了解多媒体内容中描述或显示的事件彼此相关是开发可用于真实世界媒体的强大人工智能系统的关键组成部分。尽管许多研究专门用于文本,图像和视频域中的事件理解,但没有一个研究探索事件跨域中经历的复杂关系。例如,新闻文章可能会描述“抗议”事件,而视频显示“逮捕”事件。认识到视觉“逮捕”事件是更广泛的“抗议”事件的一个子事件,这是一个具有挑战性但重要的问题,但前面的工作尚未探讨。在本文中,我们提出了多模式事件关系关系的新任务,以识别这种跨模式事件关系。我们贡献了一个大规模数据集,该数据集由100K视频新文章对组成,以及密集注释的数据的基准。我们还提出了一种弱监督的多模式方法,该方法将来自外部知识库(KB)的常识性知识整合在一起,以预测丰富的多模式事件层次结构。实验表明,我们的模型在我们提出的基准上优于许多竞争基线。我们还对模型的性能进行了详细的分析,并建议未来研究的方向。
translated by 谷歌翻译
人类凝视行为的预测对于构建可以预见用户注意力的人类计算机交互式系统很重要。已经开发了计算机视觉模型,以预测人们在寻找目标对象时进行的固定。但是,何时没有目标呢?同样重要的是要知道人们在找不到目标时如何搜索以及何时停止搜索。在本文中,我们提出了第一个以数据驱动的计算模型来解决搜索终止问题,并预测了搜索未出现在图像中的目标的人进行的搜索固定的扫描路径。我们将视觉搜索建模为模仿学习问题,并代表观众通过使用新颖的状态表示来获取的内部知识,我们称之为foveated特征映射(FFMS)。 FFMS将模拟的散发性视网膜集成到预处理的Convnet中,该转向网络产生网络内功能金字塔,所有这些都具有最小的计算开销。我们的方法将FFMS作为逆增强学习中的状态表示。在实验上,我们在预测可可搜索数据集上的人类目标搜索行为方面提高了最新技术的状态
translated by 谷歌翻译
对从FFPE组织块制备的载玻片上切割的染色组织的光学显微镜检查是组织诊断的金标准。此外,任何病理学家的诊断能力和专业知识都取决于他们在常见和稀有变体形态上的直接经验。最近,深度学习方法已被用来成功显示此类任务的高度准确性。但是,获得专家级注释的图像是一项昂贵且耗时的任务,人为合成的组织学图像可能会非常有益。在这里,我们提出了一种方法,不仅可以生成组织学图像,从而重现普通疾病的诊断形态特征,而且还提供了产生新的和罕见形态的用户能力。我们的方法涉及开发一种生成的对抗网络模型,该模型综合了由类标签约束的病理图像。我们研究了该框架合成现实的前列腺和结肠组织图像的能力,并评估了这些图像在增强机器学习方法的诊断能力以及通过一组经验丰富的解剖病理学家的可用性方面的实用性。我们的框架生成的合成数据在训练深度学习模型中进行了类似于实际数据进行诊断。病理学家无法区分真实图像和合成图像,并显示出相似的前列腺癌分级的观察者间一致性。我们扩展了从结肠活检中显着复杂图像的方法,并表明也可以再现了此类组织中的复杂微环境。最后,我们介绍了用户通过简单的语义标签标记来生成深层组织学图像的能力。
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
Modelling and forecasting real-life human behaviour using online social media is an active endeavour of interest in politics, government, academia, and industry. Since its creation in 2006, Twitter has been proposed as a potential laboratory that could be used to gauge and predict social behaviour. During the last decade, the user base of Twitter has been growing and becoming more representative of the general population. Here we analyse this user base in the context of the 2021 Mexican Legislative Election. To do so, we use a dataset of 15 million election-related tweets in the six months preceding election day. We explore different election models that assign political preference to either the ruling parties or the opposition. We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods. These results demonstrate that analysis of public online data can outperform conventional polling methods, and that political analysis and general forecasting would likely benefit from incorporating such data in the immediate future. Moreover, the same Twitter dataset with geographical attributes is positively correlated with results from official census data on population and internet usage in Mexico. These findings suggest that we have reached a period in time when online activity, appropriately curated, can provide an accurate representation of offline behaviour.
translated by 谷歌翻译
Representing and synthesizing novel views in real-world dynamic scenes from casual monocular videos is a long-standing problem. Existing solutions typically approach dynamic scenes by applying geometry techniques or utilizing temporal information between several adjacent frames without considering the underlying background distribution in the entire scene or the transmittance over the ray dimension, limiting their performance on static and occlusion areas. Our approach $\textbf{D}$istribution-$\textbf{D}$riven neural radiance fields offers high-quality view synthesis and a 3D solution to $\textbf{D}$etach the background from the entire $\textbf{D}$ynamic scene, which is called $\text{D}^4$NeRF. Specifically, it employs a neural representation to capture the scene distribution in the static background and a 6D-input NeRF to represent dynamic objects, respectively. Each ray sample is given an additional occlusion weight to indicate the transmittance lying in the static and dynamic components. We evaluate $\text{D}^4$NeRF on public dynamic scenes and our urban driving scenes acquired from an autonomous-driving dataset. Extensive experiments demonstrate that our approach outperforms previous methods in rendering texture details and motion areas while also producing a clean static background. Our code will be released at https://github.com/Luciferbobo/D4NeRF.
translated by 谷歌翻译
Code generation models have achieved impressive performance. However, they tend to be brittle as slight edits to a prompt could lead to very different generations; these robustness properties, critical for user experience when deployed in real-life applications, are not well understood. Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation. In this paper, we propose ReCode, a comprehensive robustness evaluation benchmark for code generation models. We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format. They are carefully designed to be natural in real-life coding practice, preserve the original semantic meaning, and thus provide multifaceted assessments of a model's robustness performance. With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt. In addition, we define robustness metrics for code generation models considering the worst-case behavior under each type of perturbation, taking advantage of the fact that executing the generated code can serve as objective evaluation. We demonstrate ReCode on SOTA models using HumanEval, MBPP, as well as function completion tasks derived from them. Interesting observations include: better robustness for CodeGen over InCoder and GPT-J; models are most sensitive to syntax perturbations; more challenging robustness evaluation on MBPP over HumanEval.
translated by 谷歌翻译
Modeling perception sensors is key for simulation based testing of automated driving functions. Beyond weather conditions themselves, sensors are also subjected to object dependent environmental influences like tire spray caused by vehicles moving on wet pavement. In this work, a novel modeling approach for spray in lidar data is introduced. The model conforms to the Open Simulation Interface (OSI) standard and is based on the formation of detection clusters within a spray plume. The detections are rendered with a simple custom ray casting algorithm without the need of a fluid dynamics simulation or physics engine. The model is subsequently used to generate training data for object detection algorithms. It is shown that the model helps to improve detection in real-world spray scenarios significantly. Furthermore, a systematic real-world data set is recorded and published for analysis, model calibration and validation of spray effects in active perception sensors. Experiments are conducted on a test track by driving over artificially watered pavement with varying vehicle speeds, vehicle types and levels of pavement wetness. All models and data of this work are available open source.
translated by 谷歌翻译
With the success of neural volume rendering in novel view synthesis, neural implicit reconstruction with volume rendering has become popular. However, most methods optimize per-scene functions and are unable to generalize to novel scenes. We introduce VolRecon, a generalizable implicit reconstruction method with Signed Ray Distance Function (SRDF). To reconstruct with fine details and little noise, we combine projection features, aggregated from multi-view features with a view transformer, and volume features interpolated from a coarse global feature volume. A ray transformer computes SRDF values of all the samples along a ray to estimate the surface location, which are used for volume rendering of color and depth. Extensive experiments on DTU and ETH3D demonstrate the effectiveness and generalization ability of our method. On DTU, our method outperforms SparseNeuS by about 30% in sparse view reconstruction and achieves comparable quality as MVSNet in full view reconstruction. Besides, our method shows good generalization ability on the large-scale ETH3D benchmark. Project page: https://fangjinhuawang.github.io/VolRecon.
translated by 谷歌翻译
Recent efforts in Neural Rendering Fields (NeRF) have shown impressive results on novel view synthesis by utilizing implicit neural representation to represent 3D scenes. Due to the process of volumetric rendering, the inference speed for NeRF is extremely slow, limiting the application scenarios of utilizing NeRF on resource-constrained hardware, such as mobile devices. Many works have been conducted to reduce the latency of running NeRF models. However, most of them still require high-end GPU for acceleration or extra storage memory, which is all unavailable on mobile devices. Another emerging direction utilizes the neural light field (NeLF) for speedup, as only one forward pass is performed on a ray to predict the pixel color. Nevertheless, to reach a similar rendering quality as NeRF, the network in NeLF is designed with intensive computation, which is not mobile-friendly. In this work, we propose an efficient network that runs in real-time on mobile devices for neural rendering. We follow the setting of NeLF to train our network. Unlike existing works, we introduce a novel network architecture that runs efficiently on mobile devices with low latency and small size, i.e., saving $15\times \sim 24\times$ storage compared with MobileNeRF. Our model achieves high-resolution generation while maintaining real-time inference for both synthetic and real-world scenes on mobile devices, e.g., $18.04$ms (iPhone 13) for rendering one $1008\times756$ image of real 3D scenes. Additionally, we achieve similar image quality as NeRF and better quality than MobileNeRF (PSNR $26.15$ vs. $25.91$ on the real-world forward-facing dataset).
translated by 谷歌翻译